An overview of the TiberCAD capabilities

Alessandro Pecchia

CNR - ISMN Institute for Nanostructured Materials

University of Roma "Tor Vergata"

M. Auf der Maur, G. Penazzi, F. Sacconi, G. Romano A Gagliardi, F. Santoni, A. Di Carlo

tC

Optolab group

TiberCAD people

Dr. A. Pecchia

Dr. A. Gagliardi

Mr. F. Santoni

Dr. G. Romano

Dr. G. Penazzi

Dr. M. Auf der Maur

Dr. F. Sacconi

Mr. W. Rodrigues

EURO TMCS I 28th January 2015

Prof. Aldo Di Carlo

tiber CAD

Multiscale Device Simulator

http://www.tiberlab.com

Applications

EURO TMCS I 28th January 2015

multiscale/multiphysics

Different physical models on different scales are needed to describe electronic devices

Introduction: TiberCAD

EURO TMCS I 28th January 2015

OVERLAP METHOD

 each model computes physical quantities that act as parameters to the other models.

Schrödinger/Poisson Transport parameters from DFT

BRIDGE METHOD

 each domain provides boundary conditions to adjacent domains.

NEGF/drift-diffusion VFF/continuous elasticity

M. Auf der Maur, G. Penazzi , G. Romano, F. Sacconi, , A. Pecchia , A. Di Carlo IEEE Trans. Electron Devices, 58, 1425 (2011)

Models overview

General Structure

OU

EURO TMCS I 28th January 2015

GUI development

EURO TMCS I 28th January 2015

{

TiberCAD input file - Modules

Module elasticity

```
name = strain
regions = all
plot = (Strain, Stress, Displacement)
Solver {
  preconditioner = lu
  method = pconly
}
Physics {
  body force lattice mismatch {
    reference material = GaN
Contact substrate { type = clamp }
```

EURO TMCS I 28th January 2015

Drift-Diffusion

Drift-Diffusion equations

- Consider only $M^{(0)}$ and $M^{(1)}$, assuming carriers in thermal equilibrium $(T_e = T_0)$
- □ Assume term $(\mathbf{u}\nabla\mathbf{u})$ is negligible
- $\hfill \hfill \hfill$

Current equations

$$\mathbf{J}_{n} = qn\mu_{n}\mathbf{F} + qD_{n}\nabla n$$
$$\mathbf{J}_{p} = qn\mu_{p}\mathbf{F} - qD_{p}\nabla p$$

Continuity equations

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J}_{n} + G - R$$
$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{J}_{p} + G - R$$

Poisson equation: $\mathbf{F} = -\nabla V$ $\nabla \cdot (\varepsilon_0 \varepsilon_r \nabla V) = -q(p - n + N_D - N_A)$

EURO TMCS I 28th January 2015

k

Mobility models

tey parameter:
$$\mu = \mu(F, T, N_D, N_A, ...)$$

Low Field

$$\mu(T) = \mu_0 \left(\frac{T}{300}\right)^{\alpha}$$

Silicon-like

$$\mu(F) = \mu_0 \frac{1}{\left(1 + \left(\frac{\mu_0 F}{v_{sat}}\right)^{\beta}\right)^{1/\beta}}$$

High field

GaAs-like

$$\mu_0 + \frac{v_{sat}}{F} \left(\frac{F}{F_0}\right)^{\gamma}$$

$$\mu(E) = \frac{1 + \left(\frac{F}{F_0}\right)^{\gamma}}{1 + \left(\frac{F}{F_0}\right)^{\gamma}}$$

Doping Dependent

$$\mu(N_D) = \mu_0 - A \ln\left[\frac{N_D}{n_i}\right]$$

Organic transport

Band-like

$$\mu(F) = \frac{\mu_0(T)\sqrt{2}}{\left[1 + \sqrt{1 + \frac{3\pi}{8} \left(\frac{\mu_0 F}{v_s}\right)^2}\right]^{\frac{1}{2}}}$$

EURO TMCS I 28th January 2015

Shockley-Read-Hall (SRH) recombination (non-radiative)

$$R_{SRH} = \frac{pn - n_i^2}{\tau_p \left[n + n_i \exp\left(\frac{E_t - E_i}{kT}\right) \right] + \tau_n \left[p + n_i \exp\left(\frac{E_i - E_t}{kT}\right) \right]}$$

Radiative recombination

$$R_R = C\left(pn - n_i^2\right)$$

Auger recombination (non-radiative)

$$R_A = D_n \left(pn^2 - nn_i^2 \right) + D_p \left(np^2 - pn_i^2 \right)$$

Impact ionization generation (hot-carriers)

$$G_{II} = \alpha_n \frac{|J_n|}{q} + \alpha_p \frac{|J_p|}{q} \qquad \qquad \alpha_{n,p}(F) = \alpha_{n,p}^{\infty} \exp\left[-\left(\frac{F_{n,p}^{crit}}{F}\right)^{\beta_{n,p}}\right]$$

Photoabsorption generation

$$G_{ph} = \alpha \left| E \right|^2$$

EURO TMCS I 28th January 2015

Special case for organics

F. Santoni, A. Gagliardi, M. auf der Maur, A. Di Carlo, Organic Electronics 15 (2014) 1557–1570

tiber CAD

17

Elasticity and Strain Module

Physical Models: Strain in heterostructures

- External mechanical forces can be included as boundary conditions
- We can calculate shape deformation and piezoelectric effect $P_i = e_{i,jk} \varepsilon_{jk}$
- Converse piezoelectric effect can be included $\sigma_{jk} = -e_{i,jk}E_i$
- Thermal stress can be included $\varepsilon_{jk} = -\alpha_{jk}(T T_0)$

EURO TMCS I

• Several boundary conditions: substrate, plane, free

28th January 2015

tiber CAD

19

Grid deformations

Povolotskyi-Di Carlo, JAP 100, 063514 (2006)

Piezoelectric sensors in InGaAs

Electron density in the AlGaAs/InGaAs/GaAs B-face structure without (a) and with (b) pressure (F = 75mN/cm).

Band profile and classical electron density for the B-face structure with and without pressure.

Piezoresistivity for the AlGaAs/InGaAs/GaAs structure. Gate voltage is 0 V.

Piezoelectric nanogenerators

Quantum States

Quantum Models: k·p

Envelope Function Approx

k·p Hamiltonian generalizes single band dispersions

 $\left|\psi^{i}(r)\right\rangle = \sum_{n} \left|u_{n\Gamma}(r)\right\rangle \phi_{n}^{i}(r) \quad \longleftarrow \quad \text{Envelope function}$ $\sum_{n} \left[E_{\Gamma}\delta_{mn} + \frac{\hbar^{2}k^{2}}{2m^{2}}\delta_{mn} + H_{mn}(\mathbf{k}) + V(r)\delta_{mn}\right] \phi_{n}^{i}(r) = E^{i}\phi_{m}^{i}(r)$

k is interpreted as the usual momentum operator: $k_l \mapsto i\partial_l$

In TiberCAD:

Full Band kp

EURO TMCS I 28th January 2015

M. Buda et. al., IEEE Journal of Quantum Electronics, 2003

Energy

Energy/Position Multiscale

Drift-Diffusion Transport

EURO TMCS I 28th January 2015

tC

InGaAs Quantum wire: overlap scheme

EURO TMCS I 28th January 2015

Embracing technique

TiberCAD includes a technique for mixing classical and quantum density, acting as a quantum correction to drift-diffusion calculation

Embracing region where **classical** and **quantum** charge are mixed.

The mixing parmeter is solution of a Laplace equation with Dirichelet boundary conditions 0.0 and 1.0

Alternative: Quantum+Classical

EURO TMCS I 28th January 2015

InP dots for gas sensing

Idealized dot

Realistic dot

Strain field maps

Closely coupled dots

EURO TMCS I 28th January 2015

Electronic properties

Comparisons between dots

homo-nuclear dots 14 Homonuclear QDM Dot1 Dot2 12 Power density [nW/eV] el: 10 8 6 4 hl: 2 0 1.45 1.5 1.55 1.4 1.6 E (eV) hetero-nuclear dots 14 Homonuclear QDM Heteronuclear QDM 12 Power density [nW/eV] 10 el: 8 6 4 hl: 2 0 L____ 1.4 1.45 1.5 1.55 1.6 E (eV)

C U

EURO TMCS I 28th January 2015

Shape and alloy effects in Qdot system

EURO TMCS I 28th January 2015

Lateral coupling via strain

Impact of **lateral** coupling given mainly by strain field (continuum and k*p 3D model): **shift** of the spectrum of the central dot of about **90meV**

tiberCAD 35

EURO TMCS I 28th January 2015

Current densities

Increasing electron current density with electron-rich layer

Bridge Multiscale

Thermal properties of HEMT

ŧ.

EURO TMCS I 28th January 2015

Thermal Models

Fourier Heat Diffusion:
$$-\nabla \cdot (\kappa \nabla T) = H$$

Energy Moment of the Boltzman Transport Equation for phonons

$$\frac{\partial e^{"}}{\partial t} + \mathbf{v} \cdot \nabla e^{"} = -\frac{e^{"}-e^{0}}{\tau}$$

$$e^{"} = \int \hbar \omega [N - \overline{N}(T_{ref})]g(\omega)d\omega$$
A gray model assume isotropic and constant phonon velocity:

$$\frac{\partial e^{"}}{\partial t} + v_{s}\nabla \cdot \mathbf{s}e^{"} = -\frac{e^{"}-e^{0}}{\tau}$$

EURO TMCS I 28th January 2015

tC

Fourier/Gray bridge method

Temperature profile

EURO TMCS I 28th January 2015

Special self-consistence scheme

Electro-thermal and Strain

- How does mechanical stress in a HEMT depend on operating conditions?
- Electrical, thermal and mechanical device behavior are interconnected:

Simulation Results: mechanical energy

Mechanical energy density, integrated along [0001]:

^{Au} S <mark>- 1.5</mark>	μm G SiN _{x 4 μm}	D
	→0.5 μm → 3 nm GaN n.i.d	
	22 nm Al _{0.28} Ga _{0.72} N n.i.d	
z [500] [1120] X	2 μm GaN	

- Converse piezoelectric effect increases locally mechanical stress
- Self-heating decreases
 overall mechanical stress

Critical planar energy densities are given in the range of 0.49 $\sim 0.7~J/m^2$ Joh et al. Microelectronics Reliability, 50, 767, 2010

J. Floro et al. J. Appl. Phys., 96, 7087, 2004

Quantum Transport: NEGF

Models overview

18

Open quantum systems

$[E - H + \Sigma^{r}(E)]G^{r}(E) = \mathbf{I}$

$D(\mathbf{r}, E) = 2i \operatorname{Im} G^{r}(\mathbf{r}, \mathbf{r}, E)$

libNEGF

EURO TMCS I 28th January 2015

NEGF: contact generation

- Automatic mesh creation using *lib*MESH classes
- General extrusion of planar contacts in 1,2,3D

Example: MOS with NEGF

Mix between overlap (Schrödinger/Poisson) and bridge (current at NEGF boundary) schemes

NEGF: input file

absolute_tolerance = 1e-3 relative tolerance = 1e-9

EURO TMCS I 28th January 2015

RTD devices

EURO TMCS I 28th January 2015

InGaN/GaN multi QW

Example: excited states

• Here we use (NE)GF to calculate the LDOS, on top of a DD

Difficulties

- Difficulties: separate n/p densities near equilibrium
- Below knee voltage the minority carrier densities become extremely low
- Reproduce non-radiative recombinations in NEGF (Auger, SRH)
- Introduce el-γ coupling in NEGF

EURO TMCS I 28th January 2015

EURO TMCS I 28th January 2015

Atomistic structure generation

 We can assure a consistent atomistic structure using a top down approach:

- 1. Identify relevant volume
- 2. Shift origin slightly inside
- 3. Fill up with atoms using the crystal basis
- 4. Cut atoms outside of the structure

It is important that all atoms are lying **inside** the simulation domain

we assume pseudomorphic structures with commensurate interfaces

The multiscale problem

EURO TMCS I 28th January 2015

Valence Force Field

We included a Keating model to calculate strain at an atomistic level

$$U = \sum_{i} U_{i\alpha} + U_{i\beta}$$

$$U_{i\alpha} = \sum_{j} \frac{3\alpha_{ij}}{16r_{0ij}^2} \left(|\mathbf{r}_{ij}|^2 - r_{0ij}\right)^2$$

$$U_{i\beta} = \sum_{j} \sum_{k \neq j} \frac{3\beta_{ijk}}{8r_{0ij}r_{0ik}} \left(\mathbf{r}_{ij} \cdot \mathbf{r}_{ik} - r_{0ij}r_{0ik}\cos\theta_{0ijk}\right)^2$$

The equilibrium position is that one which minimizes U We use a nonlinear conjugate gradient minimization technique

Keating (1966) D. Camacho, Y. M. Niquet (2009) Penazzi Gabriele, PhD. Thesis (2010)

VFF vs Elasticity

Evaluating when Continuum Elasticity failures is not trivial. It depends on structure geometry. In general, it fails near interfaces

InAs quantum dot on GaAs substrate

Self assembled by strain relaxation High lattice mismatch (about 7%)

EURO TMCS I 28th January 2015

VFF vs Elasticity II

Smaller differences on low aspect/ratio structures

EURO TMCS I 28th January 2015

Empirical Tight Binding

 $\psi(\mathbf{r}) = \sum \quad \sum \quad C_{i\alpha} \phi_{i\alpha}(\mathbf{r} + \mathbf{R}_i)$

site, *i*

atomic orbitals, α

 $\langle \phi_{i\alpha} | \phi_{j\beta} \rangle = S_{i\alpha, j\beta} = \delta_{ij} \delta_{\alpha\beta}$

$$\sum_{\substack{\text{atomic} \\ \text{site, j}}} \sum_{\substack{\text{orbitals, }\beta}} \left[H_{i\alpha, j\beta} - E_n \right] C_{j\beta} = 0 \qquad \text{matrix notation:} \\ \mathbf{HC} = \mathbf{EC}$$

EURO TMCS I 28th January 2015

Empirical Tight-Binding

The sp³s* Hamiltonian [Vogl et al. J. Phys. Chem Sol. 44, 365 (1983)]

The sp³d⁵s* Hamiltonian [Jancu et al. PRB 57 (1998); PRB (2001)]

EURO TMCS I 28th January 2015

k.p vs TB

Residual difference can be due to interface effects

Alloys

Can treat alloys in two ways: VCA (virtual crystal approximation, effective material) or 'real' structure (e.g. random alloy)

- In VCA matrix elements are taken as mean values: $In_xGa_{1-x}N = x^*(InN) + (1-x)^*(GaN)$
- otherwise onsite elements according to the atom and hopping element according to the pair

requires supercell + statistical ensemble

Note: we like parameter sets where the common atom (N) is consistent between InN and GaN

Motivation: why InGaN/GaN

- Tunable gap across visible: high efficiency/efficacy LEDs
- Theoretically could allow for all-nitride phosphor-free white light
- Challenge: InN GaN are 10% lattice mismatched !

Localization behavior in InGaN QW

Correlation of local In concentration with wave function localization Electrons and holes subject to different In fluctuations planes

OU

EURO TMCS I 28th January 2015

Effect of non-uniformity

EURO TMCS I 28th January 2015

InGaN QW: optical matrix element

Lateral localization leads to strong fluctuations in optical matrix elements

Increasing deviation from VCA values

tiberCAD 73

Modelling nanopillars

M. Auf der Maur IEEE TED (2011)

EURO TMCS I 28th January 2015

InGaN nanocolumns

EURO TMCS I 28th January 2015

InGaN nanocolumns

EURO TMCS I 28th January 2015

InGaN nanocolumns

EURO TMCS I 28th January 2015

Modelling nanopillars

EURO TMCS I 28th January 2015

Modelling nanopillars

ETB groundstates

EURO TMCS I 28th January 2015

VFF and elasticity models

EURO TMCS I 28th January 2015

Effects of clustering

Strain from VFF on a random sample

Optical Spectrum – no clustering

In 30%

FWHM = 18 meV

EURO TMCS I 28th January 2015

Optical Spectrum – 30% clustering

In 30%

In 10%

Distribution of energy gaps Mean = 2.793 Std = 0.028 skew = -0.708

EURO TMCS I 28th January 2015

Transport across EBL

tunneling across Al_{0.2}Ga_{0.8}N EBL:

Considerable fluctuations due to random alloy: similar to defect assisted tunneling

EURO TMCS I 28th January 2015

tiberCAD 86

0.7

Inter-well transport in LED

tunneling across In_{0.05}Ga_{0.95}N barrier:

EURO TMCS I 28th January 2015

Oxide-tunneling

Sacconi et al IEEE TED 2004 and 2007 M. Auf der Maur et al. J. Comp. Elect., 7 398 (2008)

EURO TMCS I 28th January 2015

Bridge method: flux continuity

EURO TMCS I 28th January 2015

1,000,000 atoms on a WS!

Fig 3:State 1 confined inside the Dot

Fig 5:State 8 confined inside the Ring

Lambda state

W. Rodrigues, A. Pecchia, A Di Carlo, Comp. Phys. Comm. (2014)

EURO TMCS I 28th January 2015

Software Development ToolKit

Software Development toolKit

 \Rightarrow Allows to add new modules by user without relinking core

Example: Poisson

tiberCAD 93

private:

};

Conclusions

- Multiscale/multiphysics is requested for simulation of real modern electronic devices where electronics, optics, chemistry are linked together
- We have seen the most important physical models implemented in tiberCAD
- We have discussed the basics of how to couple atomistic and classical simulations
- Much effort is still needed to arrive at a true multiscale integration for transport simulations

Additional info about **TiberCAD**: http://www.tibercad.org

Download free trial version:

www.tiberlab.com info@tiberlab.com

THANK YOU !

