Multi-scale methods in electronic device simulation

Aldo Di Carlo

M. Auf Der Maur, A. Pecchia, F. Sacconi, G. Penazzi, G. Romano, A. Gagliardi D. Gentilini

Department of Electronic Engineering,
University of Rome “Tor Vergata”, Italy

Acknowledgments:
- EU FP7 Projects (SMASH, Clermont 4, Opther, HYMEC) - Lazio Region (Italy)
Progress and Future Challenges in Computational Material Science

Top-Down Downscaling

Conventional Scaling
MOSFET

More Non-Silicon Elements Introduced

Manufacturing cost increases

(source INTEL)
Beyond MOS: molecular electronics

Electron transport across molecules

Structural modification

Coulomb blockade

Reed, APL, 2002

H. Park, Science, 2003

Heiko, PNAS, 2005
At the nanoscale “every atom matters!”

Density Functional TB + NEGF + scattering
[PRL 100, 136801 (2008)]

Power dissipated in the C60 molecule is 10 nW

Power calculated as $I \times V = 10 \mu W !!!!$

H-passivated SiNW with one
- Si dangling bond
- OH passivated dangling bond

See A. Pecchia talk
In a real device also micro and macro scale should be considered

- Devices should be accessible from a macro scale
- micro/macro scale details are as important as nanoscale features (temperature distribution, electrostatics, strain, air gap, etc.)
- Number of atoms cannot grow too much in simulations
- 20 years of experience with Drift-diffusion matters!

Nano, micro and macro scale should be combined in a multiscale approach
The multiscale problem

Typical Pentium 4 MOSFET section

Circuit level

- Copper wires
- Intermetal dielectric
- Copper vias
- Cross-section thru chip

Length scale

- nm
- μm
- mm

Architecture
Circuit Level

Microstructure
Finite elements

classical
Force fields MM

Mesoscopic scales - 1 billion atoms and more technologically real processes

Nanostructures/processes increasing technological relevance Up to 1,000,000 Atoms 100 ns

Elementary processes
Model structures, short time scale Few 1000 atoms, max. 10 ps

Empirical

Semi-empirical

Ab initio

QM
Multiscale methods in material science

Propagation of a shock wave in a crystal
- central region is treated at the atomistic level (MM)
- external part are treated in the continuous approx. (FEM)

Courtesy of G. Anciaux
Multiscale simulations: TiberCAD

Nanoscale description

Macro-Microscopic description (Strain, Drift-Diffusion, Heat, etc)

Circuit simulation

Synthesis

Analysis

www.tibercad.org
Multiscale components

Finite Element Method

- FEM is the method in engineering problems (deformation/strain, heat, Maxwell, etc. etc.)

- Drift-diffusion (DD) like schemes have been solved with box integration methods.

- DD-FEM have been heavily developed in the last 20 years in the Math community (*Hecht, Marrocco, Brezzi, Sacco, Chen*)

- many FEM library in GPL

Atomistic local basis

- Localized basis approach are very well suited for device simulations

- Empirical approaches (ETB)

- Approximate DFT (DFTB)

- Full DFT (Siesta, DMOL, etc.)
Development is done in C++ / C / Fortran in Linux, porting to other UNIX-like environments and Windows has been achieved.

TiberCAD is freely downloadable at www.tibercad.org
TiberCAD models

- Mechanical deformation with any kind of constrain
- Semiconductor Strain including piezoelectric effect
- Drift-Diffusion transport of electrons / holes / excitons / Ions (+ Poisson)
- Heat transport (Fourier and Boltzmann related methods)
- Quantum mechanics based with $k \cdot p$ envelope function approximation
- Empirical Tight-Binding (sp3d5s*, or any other basis)

- Classical molecular mechanics
- Atomistic description via Density Functional TB (Fraunheim/Aradi)
- *NEGF library*
- *Maxwell solver*
Multiscale methods

OVERLAP METHOD

- the domains are overlapped
- each model computes physical quantities that act as parameters to the other models.

BRIDGE METHOD

- the domains are contiguous and linked through n-1 dimensional regions.
- each domain provides boundary conditions to adjacent domains.
Multiscale simulations: BRIDGE method

1) Strain: Continuum elasticity model and Valence force field
Whenever we deal with device composed by crystals with different lattice constant, we have to deal with strain.

\[\varepsilon_{ik} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_k} + \frac{\partial u_k}{\partial x_i} \right) \]

\[\varepsilon_{ij}(r) = \tilde{\varepsilon}_{ij}(r) + \varepsilon_{ij}^0(r) \]

This PDE is solved with FEM technique:

\[\frac{\partial}{\partial x_k} (C_{iklm} \varepsilon_{lm}) = \frac{1}{2} \frac{\partial}{\partial x_k} \left[C_{iklm} \left(\frac{\partial u_l}{\partial x_m} + \frac{\partial u_m}{\partial x_l} \right) \right] = f_i \]
Valence Force Field (VFF)

We included a Keating model to calculate strain at an atomistic level

\[U = \sum_i U_{i\alpha} + U_{i\beta} \]

\[U_{i\alpha} = \sum_j \frac{3\alpha_{ij}}{16r_{0ij}^2} \left(|\mathbf{r}_{ij}|^2 - r_{0ij}^2 \right)^2 \]

\[U_{i\beta} = \sum_j \sum_{k \neq j} \frac{3\beta_{ijk}}{8r_{0ij}r_{0ik}} \left(\mathbf{r}_{ij} \cdot \mathbf{r}_{ik} - r_{0ij}r_{0ik} \cos \theta_{0ijk} \right)^2 \]

The equilibrium position is that one which minimizes \(U \). We use a nonlinear conjugate gradient minimization technique.

Advantages:

- Most efficient atomistic technique.
- Description beyond effective medium (random alloy)
- Include internal strain
- More accurate for some classes of nanostructures
Multiscale strain: Mixing VFF and CE

Spherical InAs quantum dot in GaAs box

16 nm cubic box (200 000 atoms).

Good agreement a few nanometers outside the dot but CE fails in the Dot region. VFF is CPU demanding.

\(\varepsilon_{xx} \)

\(\varepsilon_{zz} \)
Progress and Future Challenges in Computational Material Science

CE/VFF approach

1) Solve CE everywhere with lattice match boundary condition at the substrate
2) Apply displacement to atoms
3) Fix external atoms as a boundary condition for VFF (bridge method)
4) Solve VFF in the smaller structure
5) Join results

Now atomistic structure is only defined in a smaller box (4nm) with 4000 atoms
Multiscale simulations: OVERLAP method

2) Nitride-based Nanorod: Drift-Diffusion, ETB and k.p
Simulation of GaN/alGaN nanowire LED

FP7-EU project SMASH

Multiscale CE/VFF Strain calculation

M. Auf der Maur IEEE TED 58, 1425 (2011)
Strain:
Tight Binding parameters calculated according to extended Harrison scaling rule.

\[V_{\alpha\beta} = V_{\alpha\beta} \cdot \left(\frac{d_0}{d} \right)^{n_{\alpha\beta}} \]

Potential:
Use FEM potential solution to provide Hamiltonian shifts.
- If no SCC calculation is needed, slow varying potential is projected simply as point potential on atom position.
- If SCC is needed, a projection over an s-type orbital with exponential decay is used.

Charge:
Quantum charge is projected back to FEM grid. An s-type projection with exponential decay is used.

\[V_i = V(r_i) \]
\[V_i = \frac{\tau_i^3}{8\pi} \int V(r_i) e^{-\tau|\mathbf{r} - \mathbf{r}_i|} \, dr \]
\[n(r) = \sum_i \frac{\tau_i^3}{8\pi} \int \Delta q_i e^{-\tau|\mathbf{r} - \mathbf{r}_i|} \, dr \]
Phase space and overlap Multiscale

Energy

Drift-Diffusion Transport

Classical density

Quantum density: ETB

Quantum density: K.P

Position

 ACTIVE REGION

n-AlGaN GaN p-AlGaN
The electrostatic potential and current flow lines around the intrinsic part of the column. Classical and quantum results. The selfconsistent EFA/ETB/drift-diff. results shows also the contours of the electron and hole densities at half of the mean density inside the intrinsic region.
Comparisons between classical and quantum simulations shows that in classical simulations radiative recombinations originates from a region very close to the surface of the column, while using the quantum mechanical particle densities, the bulk radiative recombination rate results to be mainly concentrated at the center of the quantum disk due to the spatial confinement of the carriers.

Classical radiative recombinations Quantum radiative recombinations
Continuum/Atomistic Modeling of STM

Tungsten STM tip

Idealized model of the tip

Here the STM tip and the probed molecule and substrated is modelled by using a multiscale FEM/atomistic approach.

FEM domain is used to calculate potential and Fermi levels while the atomistic approach uses NEGF to obtain tunneling currents and charges.
Multiphysics/Multiscale

Dye Sensitized Solar Cells (Graetzel Cells)
Scheme of a DSC

Electrolyte I/I₃

- **TCO**
- **PLATINUM**
- **DYE**
- **TiO₂**

20-30 μm
DSC cells and modules (our exp. results)

$V \text{ [V]}$

$J \text{ [mA/cm}^2\text{]}$

- $I_{SC} = 21.8 \text{ mA/cm}^2\text{; Area} = 0.25 \text{ cm}^2$
- $V_{OC} = 787 \text{ mV}; \text{ FF} = 65.71\%$
- $\eta = 11.29\%$

Current (mA)

Power (mW)

$P_{max} = 0.56[W]$
$V_{oc} = 4.2[V]$
$I_{sc} = 0.246[A]$
$FF = 54.28\%$
$\eta_{aa} = 5.49\%$

Small area

Large area
DSC Kinetic: Important rate constants

1. **Dye Excitation**

2. **Electron Injection into TiO$_2$ Conduction Band**

3. **Oxidation of the electrolyte**
 - a. Dye relaxes into its ground state
 - b. Dye regenerated by TiO$_2$
 - c. Electrolyte reduces at TiO$_2$ surface

\[
\begin{align*}
E_{\text{redox}} & \quad \text{Electrolyte} \\
& \quad 3I^- \leftrightarrow I_3^- + 2e \\
E(eV) & \quad \text{DYE} \\
& \quad \text{CB} \\
& \quad \text{TiO}_2
\end{align*}
\]
Assumptions

1) We assume a exponential tail of trap states in TiO2

2) Electro injection from Dye to TiO2 is ideal
Theoretical model

Cathode:

\[-e\mu_{I^-} n_{I^-} \nabla \phi_{I^-} = \frac{3}{2} \frac{V}{R_L}\]

\[-e\mu_{I_3^-} n_{I_3^-} \nabla \phi_{I_3^-} = -\frac{1}{2} \frac{V}{R_L}\]

\[\nabla \cdot \left(\mu_{I_3^-} n_{I_3^-} \nabla \phi_{I_3^-}\right) = \frac{1}{2} (R - G)\]

\[\nabla \cdot \left(\mu_{I^-} n_{I^-} \nabla \phi_{I^-}\right) = -\frac{3}{2} (R - G)\]

\[R = k_e \left[n_e^\beta \sqrt{\frac{n_{I_3^-}}{n_{I^-}}} - \bar{n}_e^\beta \sqrt{\frac{\bar{n}_{I_3^-}}{(\bar{n}_{I^-})^3} n_{I^-}}\right]\]

\[\nabla \cdot \left(\mu_e n_e \nabla \phi_e\right) = (R - G)\]

Anode:

No ionic current:

\[\nabla \phi_{I_3^-} = \nabla \phi_{I^-} = 0\]

Ohmic contact:

\[\nabla \varphi = 0\]
The DSC is driven by a concentration unbalance between electrons and redox pair induced by the illumination. The drift component is negligible.

However, μ and K_e lump to many physical process and their value is still system dependent.

A. Gagliardi et al, IEEE J. Sel. Top. Quantum Electr. 16, 1611, 2010
Macroscopic parameters are still device dependent:

- Recombination constant
- Mobility

D. Gentilini, submitted to JPC C
3D simulations of Dye Solar Cell

Nano/micro structured Dye Solar Cell

Fiber Dye Solar Cell

A. Gagliardi et al, IEEE Tran. Electr. Dev. 2011
Conclusions

- Multiscale/multiphysics is requested in real modern devices where different length scales models are linked together.

- TiberCAD in one of the first consistent attempt to answer this request.

- The main effort was related to the connection between models. The Multiscale infrastructure has been defined.

- But … we are just at the beginning, much effort is still needed.

- Next: NEGF library to perform nice Drift-Diffusion / NEGF simulations etc. etc.

Additional details at http://www.tibercad.org